skip to main content


Search for: All records

Creators/Authors contains: "Smith, Ronald B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Mountains significantly influence weather and climate on Earth, including disturbed surface winds; altered distribution of precipitation; gravity waves reaching the upper atmosphere; and modified global patterns of storms, fronts, jet streams, and climate. All of these impacts arise because Earth’s mountains penetrate deeply into the atmosphere. This penetration can be quantified by comparing mountain heights to several atmospheric reference heights such as density scale height, water vapor scale height, airflow blocking height, and the height of natural atmospheric layers. The geometry of Earth’s terrain can be analyzed quantitatively using statistical, matrix, and spectral methods. In this review, we summarize how our understanding of orographic effects has progressed over 100 years using the equations for atmospheric dynamics and thermodynamics, numerical modeling, and many clever in situ and remote sensing methods. We explore how mountains disturb the surface winds on our planet, including mountaintop winds, severe downslope winds, barrier jets, gap jets, wakes, thermally generated winds, and cold pools. We consider the variety of physical mechanisms by which mountains modify precipitation patterns in different climate zones. We discuss the vertical propagation of mountain waves through the troposphere into the stratosphere, mesosphere, and thermosphere. Finally, we look at how mountains distort the global-scale westerly winds that circle the poles and how varying ice sheets and mountain uplift and erosion over geologic time may have contributed to climate change.

     
    more » « less
  2. Abstract

    Gravity wave perturbations in 15-μm nadir radiances from the Atmospheric Infrared Sounder (AIRS) and Cross-Track Infrared Sounder (CrIS) informed scientific flight planning for the Deep Propagating Gravity Wave Experiment (DEEPWAVE). AIRS observations from 2003 to 2011 identified the South Island of New Zealand during June–July as a “natural laboratory” for observing deep-propagating gravity wave dynamics. Near-real-time AIRS and CrIS gravity wave products monitored wave activity in and around New Zealand continuously within 10 regions of scientific interest, providing nowcast guidance and validation for flight planners. A novel technique used these gravity wave products to validate upstream forecasts of nonorographic gravity waves with 1–2-day lead times, providing time to plan flight intercepts as tropospheric westerlies brought forecast source regions into range. Postanalysis verifies the choice of 15 μm radiances for nowcasting, since 4.3-μm gravity wave products yielded spurious diurnal cycles, provided no altitude sensitivity, and proved relatively insensitive to deep gravity wave activity over the South Island. Comparisons of DEEPWAVE flight tracks with AIRS and CrIS gravity wave maps highlight successful repeated vectoring of the aircraft into regions of deep orographic and nonorographic gravity wave activity, and how background winds control the amplitude of waves in radiance perturbation maps. We discuss how gravity wave information in AIRS and CrIS radiances might be directly assimilated into future operational forecasting systems.

     
    more » « less